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The purpose of the paper is to give an account of several aspects of uniform
asymptotic expansions of integrals. We give examples of standard forms, the
role of critical points and methods to construct the expansions.

1. INTRODUCTION
Asymptotic expansions of integrals is an important topic of classical analysis.
Many results are available for the well-known higher transcendental functions
of mathematical physics and probability theory, and for integrals occurring as
solutions of physical problems.

Here we are concerned with uniform expansions of integrals of the type

I(z) = [fl)e ™% (1.1)

where C is a contour in the complex t-plane and z is a large parameter. Note
that the value of I(z) depends on the parameter «. We suppose that for cer-
tain values of a the asymptotic behaviour of /(z) will change.
For obtaining uniform expansions the following major steps can be dis-
tinguished:
(i) trace the points on C or near C that significantly contribute to I(z);
(ii) transform the integral into a standard form;
(ili)  construct a formal uniform expansion;
(iv)  investigate the asymptotic properties of the expansion;
V) construct error bounds;
(vi)  extend the results to wider domains of the parameters.

The first three are most frequently the only possibilities to investigate in practi-
cal problems. In applications this formal approach is usually accepted. Often
the contributions in the expansion have a physical meaning and then just the
form of the expansion is the ultimate requirement. In a systematic study of
uniform asymptotic expansions the remaining steps should be incorporated.
Also, in numerical applications efficient error bounds are particularly
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important and in this area point (v) cannot be forgotten.

The above points are not the only problems to be investigated. Several prob-
lems arising in physics (for instance in optics and in scattering theory) yield
integrals which are generalizations of Airy-type integrals. Then the approxi-
mants are higher transcendental functions which fall outside the classical ones.
The computational problems for these generalizations are not easy to solve.

In this paper we discuss several aspects of the steps enumerated above. We
give definitions of asymptotic expansions, we consider critical points and vari-
ous methods and techniques to construct the coefficients and, for some cases,
error bounds. Several unsolved problems are mentioned.

A standard reference work for asymptotic expansions is OLVER [11], also for
special functions; see also OLVER [12] for uniform expansions for special func-
tions. WONG [27] gives a survey with recent results on error bounds for
asymptotic expansions of integrals.

This paper is concerned with the classical aspects of asymptotic analysis.
Recently new investigations of integrals have been initiated by MAsLov and
HORMANDER, see DUISTERMAAT [6]. Uniformity problems are cast into the
theory of unfoldings of singularities. This approach falls outside the scope of
the present publication. An introduction to Maslov’s work can be found in
PosTON, STEWART [13].

2. DEFINITIONS OF ASYMPTOTIC EXPANSIONS
We use the terminology of generalized asymptotic expansions. First we intro-
duce the concept of asymptotic scale:

a sequence of functions {¢,(x)} is called an asymprotic sequence or scale
when Pn +l(x):0[¢n(x)] as Xx—00.

Then we have the definition:
the formal series 27°- f,(x) is said to be an asymptotic expansion of f(x) with
respect to the scale {¢,} if

N
JX)— 3 falx) = o[dn(x)] as x—o0, N=0,1, ...; 2.1

n=0

in this case we write
fx) ~ iof,,(x); {Pn(x)} as x—o0.

In uniform expansions it is required that the ‘o’ sign holds uniformly (with
respect to ae4, say). This general set up is extensively described in ERDELYI,
WymaN [7].

When f,=¢, we have a Poincaré type asymptotic expansion; when
Ja=¢,=x"" we obtain the definition of Poincaré and Stieltjes, who both
introduced the definition of this kind in 1886.

Observe that in (2.1) no requirements are put on {f,}: it need not be an
asymptotic scale. Rather useless expansions may arise (from an asymptotical
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point of view) when it is not. Also, we can take the scale too rough to measure
the error in (2.1).

EXAMPLE 2.1. Take f,(x)=(x +n)"%, and ¢,(x)=log™"x, x>1, n=0,1,2, ... .
Then we have

i (x+n)"%2 = Ox ") =0[pn(x)] as x—o0
n=N+1

for all N,m. So we can write
o]
f(x)~ S (x+n)"?% {log7"x} as x—c0
n=0

where for f we can take the convergent sum, which represents d2inT(x)/dx? (T
is the Euler gamma function).

Some expansions are provided with a ‘thin’ scale in which successive terms
become more and more indistinguishable. The following example is in WimMp
[24], a survey on uniform scale functions and asymptotic expansion of
integrals.

ExampLE 2.2. The coefficients a, of the expansion I'(1—¢)=2_¢a,t", 1] <],
satisfy the expansion
<) 1)k
o~ gV
K=o k!(k +1)"
where ¢(n)=(k +1)"". The series converges rather fast. However, the scale
satisfies ¢y —1(n)/ ¢ (n)= (1+1/k)™", which indeed is o(1) as n—oo, k=1, k
fixed. But as k increases this ratio tends to unity (n fixed).

For some functions we need a compound asymptotic expansion. That is we
have a decomposition

FO) = A f 1)+ o ARG
flx) ~ ioﬁk(x); (6} as x—oc0,
j=

{¢x(n)} as n—oo,

2.2)

where, for each k, {¢;(x)} is an asymptotic scale. In complicated problems
the f; are not known a priori.

It may be rather difficult to investigate whether an expansion is uniform
with respect to a parameter a. A non-uniformity may be recognized when in
(2.2) Ax(x), f(x) or ¢p(x) are singular at certain values of the uniformity
parameter a, whereas f (x) remains regular for these values.

ExampLE 2.3. Consider the exponential polynomial in the form
n XS
ep(x)=e > =, x>0, n=0,12, ...
s=0 s!

We have lim,_ e,(x)=0, lim,_ e,(x)=1; so the first limit cannot be
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uniformly valid when n grows with x. Asymptotic expansions for large n,
which are uniform with respect to unrestricted real values of x can be given in
terms of error functions. Any approximation in terms of elementary functions
breaks down when x passes the value n, which is not a singularity for e,(x).
The function e,(x) is related to the incomplete gamma functions and to the
Poisson distribution. For more information we refer to WONG [25], TRicoMi
[21], and [19]).

3. CRITICAL POINTS

There is a systematic approach to obtain the asymptotic expansion of (1.1). We
have to look for certain distinguished points whose immediate neighbourhoods
determine completely the asymptotic behaviour of the integral. Such points are
called critical points by VAN DER CORPUT [5]. Possible candidates are:

- the end points of the contour;

- singular points of the integrand;

- stationary or saddle points of ¢ (i.e., where d¢/0z vanishes).

The contribution of a single critical point to the asymptotic value of I(z) is
known for a great variety of critical points. We mention some key words in
this respect: Watson’s lemma, the method of Laplace, the method of steepest
descent, the method of saddle points, the principle of stationary phase and the
method of Darboux. We give a formulation of one of the most important
tools.

LEMMA (WATSON). Consider the Laplace integral

I1(z) = }Oe ~Hf (. (3.1)
0

Assume that

(1) fis locally integrable on [0, 0);

()  f(t) ~Z2a AP a5 1507, p, A fixed, p>0, ReA>0;
(iil)  the abscissa of convergence of (3.1) is not + co.

Then,

1G) ~ BT a6 32
s=0

1 1 . L
as z—oo in the sector |argz|<7m—8(<5m) where z&"N* has its principal

value.
PrOOF. See OLVER [1], p. 113]. O

Oberve that (3.2) is obtained by substituting (ii) into (3.1) and by interchang-
ing the order of summation and integration. In (ii) A and p are fixed. When
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A = 0(z) (or larger) the expansion (3.2) has no meaning. A modification of the
lemma is needed then to give a uniform expansion, see [20].

When in (1.1) a ranges over a domain A the critical points may be variable.
For certain values in 4 two or more critical points may coalesce. Usually, the
form of the expansion changes and it is unlikely that the sum of the contribu-
tions of each critical point will be uniformly valid. For instance, coefficients of
the several expansions may become singular when o takes these distinguished
values.

The systematic approach of van der Corput to add several contributions
from the critical points was an important step to take away part of the mystery
of asymptotics. In uniform problems it is also important to systematize. We
can single out the following possibilities for (1.1):

- singularity coincides with stationary point;
- end-point of contour coincides with stationary point;
- two stationary points coincide.

In VAN DER WAERDEN [23], CHESTER, FRIEDMAN, URSELL [4] and BLEISTEIN [1]
important contributions are given for these cases.

By introducing several auxiliary parameters much more situations can occur.
Some of them correspond with important physical applications or with prob-
lems for the well-known special functions of mathematical physics. A survey is
given by OLVER [12].

The approximants in uniform expansions are usually more complicated than
the elementary functions used in earlier days. Now we use error functions,
Airy functions, Bessel functions, parabolic cylinder functions, etc. The compu-
tational problem has been solved for most of these functions, and now they are
accepted as approximants.

In classifying relevant cases of coalescing critical points it is instructive to
look at approaches via the WKB or Liouville-Green methods for differential
equations. Most functions from mathematical physics can be investigated in
both directions: they have an integral representation and they satisfy a
differential equation. See again [12] for more details on this point.

4. EXAMPLES OF STANDARD FORMS

In the table we give standard forms of integrals for which well-known special
functions are used as approximants. We give the critical points, the coalescence
of which causes uniformity problems, and references to the literature.
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Standard form Approximant Critical points ~ References
4.1) f e 4 -;ﬁ—Ldt Error function t=0, t =ia [23]
—Ilx
4.2) fe"“z —Lm—dt Parabolic cylinder =0, 1 =ia [1]
e (t—iay
function
@3) [e ™ fyar Error function ¢ =0, t =a [19]
® 4 L 2“6(
@4) [#71e "% T £ (0)dr Parabolic cylinder =0, r=a  [1], 8]
0
function [14], [25]
1o,
@s) [ pwar Airy function ~ 1==Va (4], [10]
[ee]
(4.6) [releT f (r)ar Gamma function ¢=0, t=a/z [20]
0
@7 [Flef(nyar Incomplete gamma ¢ =0, ¢ =a [9], [15)
: function [17], [28]

(4.8)

(4.9)

@10) | S—i’—‘ji_’—:—ﬂf(t)dz
0

0

[tFle= e (ydr  Bessel function 1 =0, r =% Va [18]

0

o0
[f(Vr*—o?)sinztdt  Bessel function t=*a

Sine integral t=0,1r=a«a

[22], [26]

[29]

REMARKS
Functions f are supposed to be regular in neighbourhoods of the critical

1.

“oAw

points.

The integrals reduce to their approximants when f =1, except in (4.9)

where it occurs for f(z)=1”.
Quite different integrals may have the same approximants.
Different intervals of integration are investigated too.

In (4.5), (4.8) two saddle points coalesce with each other when «=0;
both cases are different, however. In (4.8) we have an additional critical

point at 1 =0 (end point and singularity).
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6. In all cases elementary approximants can be used for fixed values of the
uniformity parameter a.
7. Several of the examples need further investigations with respect to the
construction of error bounds and the determination of maximal regions
of validity.

5. TRANSFORMATION TO STANDARD FORMS

Once the critical points are located and the asymptotic phenomena are recog-
nized, a next step may be a transformation to one of the standard forms. To
obtain an optimal representation, such a transformation may be rather compli-
cated. As a consequence, it may cause serious problems for the construction of
error bounds and for the computation of the coefficients. In this section we
consider two examples. The first one (on incomplete gamma functions) is rela-
tively simple; the second one is more difficult to investigate due to the role of
the uniformity parameter.

5.1 Incomplete gamma functions
These are defined by

___l_xa—l -t .__l_wa—] -t
P(a,x) = @ O/t e 'dt, Q(a,x) = @) !z e'dr (5.1
We consider positive values of x and a. The function e,(x) of Example 2.3 is a
special case: e,(x) = Q(n +1,x). We are interested in the asymptotic expan-
sion which is valid for a—o0 and x€[0, 00) (uniformly). The function z% ~*
attains its maximal value at t =a. When x and a are nearly equal this point is
close to the end points of the intervals of integration in (5.1). Hence, we recog-
nize (4.3). We rewrite P (a,x) in the form

—a_a X/a

P(a,x) = er(aa [emetm 7y
0

The transformation into the standard form is defined by the mapping
{RT R, given by

8@ = t—1-lni, signf(r) = sign(t —1). (5.2)

The result is

—aaa

e
I(a) _

n —Lafl
P(a,x) = e 'L,
(5.3)

e

—a.a ® _%agz
0(@x) = o= [e 7 f Ok,
n

where n = (), A = x/a, f) = ¢t~ 'dt/dS = L@ —1), f(0) = 1.
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By tracing the (complex) singularities of the mapping in (5.2) we can infer that
fis analytic in the strip |Im{ |<\/2_7_r— To give the main steps in this analysis
we observe that { is analytic at t =1, but not at 1, =exp(2min), n =1, *£2, ...
(To obtain a sufficiently large {-domain we have to consider more than the
principal sheet of the Riemann surface of the logarithm in (5.2)). Correspond-
ing {-points follow from (5.2): 5= —2min; the points with n=z1 are

nearest to the real line, |Im{.,;|= V27.

This information is useful for estimating coefficients and remainders in the
asymptotic expansions of (5.3). A first approximation to the functions in (5.3)
is obtained by replacing f (t) by f(0)=1. Then the integrals can be written in
terms of the normal probability functions or error functions. In [19] the com-
plete expansion is given, which is uniformly valid with respect to neR, (or
x €[0, 0)).

5.2 Anger function of large order
A second example is from OLVER [11, p. 352]. The integral is

o0
A_(av) = [e7@smM DGt >0, »>0. (5.4)
0

A,(z) is a so-called Anger function, which is related to Bessel functions; » is
the large parameter, a is restricted to (0,1], where a =1 is a critical value.
Write  a=1/cosha. Saddle points in (54) are zeros of
d[asinht —t] = cosht/cosha—1. When a €(0,1) two real saddle points are =*=a,
which coalesce with each other when a— 1.

A transformation to the standard form (4.5) is obtained by using the mapping
{:R—-R that is defined by

sinht/cosha—t = %{3——7;{. (5.5)

To make {(¢) regular at 1 = ==« the only possible choice for 7 is
3

29" = a—tanha (5.6)

So we obtain

A-ya) = [

0

where f ({)=dt/d{. The singularities of f arise from complex singular points of

§(¢). These arise from complex solutions of the equation cosh:=cosha, i.c.,

1 =*a+2km, k==x1,+2,.... Corresponding {i values follow from (5.5).

For small values of a (i.e., large a and 1) we have (E~Vn + 074\ 27k

So, the singularities of f({) are rather close to the saddle point {= \/17, when 7
is large.

As OLVER [11] shows this distance is not too small for obtaining an

e T r @, 5.7)
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expansion for (5.7) that is uniformly valid with respect to a €[0,1], or n€[0, 00).
In Section 6 some more details about the expansion will be given.

REMARK. In both examples (5.3) and (5.7) the asymptotic nature of the expan-
sion follows from the singularities of f({), where fis considered as an analytic
function of the complex variable {. This approach is natural for the special
functions considered here. In a more general approach, where it may be
assumed that f belongs to a function class C*, the method of proof is quite
different, of course.

6. THE CONSTRUCTION OF THE FORMAL EXPANSION
Several methods are available to obtain various kinds of asymptotic expan-
sions. Roughly speaking we have the following three possibilities:

1. Expansions at the critical points;
2. Integration by parts;
3. Residue methods.

The third method is well known in the theory of Laplace and Mellin transfor-
mations for obtaining back transforms; see BLEISTEIN, HANDELSMAN [3] for a
lot of information on the use of Mellin transforms in asymptotics. It will not
be considered here. A new method based on a combination of 1. and 2. is dis-
cussed in Section 7.

The expansion at 7 =0" in Watson’s lemma (Section 3) is an example of 1.
To obtain uniform expansions integration by parts should not be done in a
straightforward way. We now demonstrate a method of BLEISTEIN [1] that is
very useful in various types of integrals.

6.1.
We consider (4.8) and we write p> =a. Saddle points occur at ¢ ===y, where
is supposed to be positive. The first step is the representation

F@) = ag+bot+( —p* /1)g() 6.1
where ag,b( follow from substitution of t ==p. We have

a0 = FU W+ (W) be=5 1 W)~ (—)
Denoting (4.8) by I(z) we obtain upon inserting (6.1) into (4.8)

1(z) = ag®y+bo®; +1,(z) (6.2)
where @, ®; are modified Bessel functions

@, = 2w/ V2P tiKg, (2uVz), j=0,1.
An integration by parts gives

L) = [P e /00—t / g ()i
0
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o 1 [e2]
= ——l—ftﬁg(t)de“‘(’“‘z/”=—ftﬁ“e‘z"*“z/’)f:(t)dt,
z zy

with fl(t)=t1"3-d‘—it~[tﬁg(t)]= Bg(t)+1g’(r). We see that zI,(z) is of the same
form as I(z). The above procedure can now be applied to z/,(z) and we
obtain for

1G) = [lemse¥ /0f e, (63)
Q

the formal expansion

© g © b
Iz) ~® 3=+ 3, as z-ox, (6.4)
s=02 5=02

where we define inductively fo(r)=f (2), go(1)=g(?) and for s =1,2,...,

£ = 0Ly 1=+ b+ =i /g0,

a = LW +A(—p) bs=3‘;[fs<m—f:(—m1.

6.2.
Next we show that it is rather easy to obtain an expansion in which B acts as a
second uniformity parameter. Then we exploit fully the fact that the Bessel
functions in @; are functions of two variables. The form of the new expansion
is exactly as in (6.4), with the same CI>j, but with different coefficients.

We write B=2»z, veR. The saddle points 7. are now zeros of
dlt +p*/t —2vInt]/dt, which gives 1. =p=(* +?)""2. The modification of
(6.1) is

f @) = co+dot +(t —20—p2/)h(2)

and we obtain for (6.3) the formal expansion

0

¢ © d;
J@)~ PP —+P 3 —, as z—c0 (6.5)
s=0Z2 s=02

Now the coefficients follow from
Fo®) = £, FO=1h @=6+dt +( =212 /R0,

_ L= f0) A=)

N ty —1_ ti—1_

Cs
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6.3.

When f of (6.3) is analytic, say in the strip |Imz|<a, then each fsﬁ and
hence all coefficients are well defined for all »R, u=>0. Extension to complex
values of », u and z is possible when more is known about f.

The expansions (6.4), (6.5) might be applied to the confluent hypergeometric
function

o]
Ua,b,z) = —r(lT)jt“—l(1+x)b—°—‘e*z'dt, (6.6)
0

where Rea>0, beC, Rez>0.

In [18] (6.6) was transformed into (6.3) and an expansion was obtained by
expanding f at the critical point # =0. The range of the parameters was rather
limited but we obtained a manageable error bound, which was very useful in a
numerical algorithm for (6.6).

Using the procedure for (6.5) we expect to be able to construct for (6.6) an
expansion for a—oo, that is uniformly valid with respect to ze€[0,0),
be(—oo,va), v<<l, v fixed. Further research is needed, however, to transform
(6.6) into (6.3), to investigate the asymptotic nature of (6.4), and to construct
error bounds.

6.4.
In OLvVER [11] a uniform expansion of (5.7) is obtained by expanding f({) at
the critical point {= V. By writing f ({)=2¢,({— V¥, the expansion
2
2 7Qis(v’ )
A_,(va) ~ 24T

] NETYINE y—>00 6.7)
s=

follows. It is shown to be uniform with respect to a€[0,1], or n€[0,00) (see
(5.6)). Here Qi (y) is related to Airy functions,

13
-5t +yt

=]
Qi(y) = = [e (= Vyya, s=0,1,..
m
0
An integration by parts procedure for (5.7) is used by WONG [27]; the result is
supplied with an error bound.

6.5.

The standard form (4.6) is investigated in [20] in both directions: integration
by parts and expansion of f at the critical point t =«/z. The asymptotic nature
of the expansions is discussed and error bounds are given. The integration by
parts procedure gives for

F(z) = A le ™ f (1)dt (6.8)

l [e.o]
™/

the expansion
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Fa(z) ~z7* i};(u)z TS, z—00 (6.9)
s=0

where

folt) = f@), ﬂﬂ(:):zi&——f‘-(—@, §=0,1,2,... (6.10)

da t—pu
with p=X /z. In [20] it is shown that {f;(u)z "*} is an asymptotic scale and
that (6.9) is a Poincaré type expansion that is uniform with respect to
p€[0, 00). The main condition on f is that its singularities are not too close to
t =p: let R, denote the radius of convergence of the Taylor expansion of f at

¢ =p, then we require R, ' =0[(1+p)™*], u=0 (k=7 « fixed).

7. A NEW CLASS OF POLYNOMIALS .

In the previous sections three different types of expansions of the integrand

function f are used for obtaining an asymptotic expansion:

1) in (3.1) an expansion at the fixed critical point ¢ =0,

(i)  for (6.7) an expansion at the movable saddle point {= \/77;

(iii))  (6.4) and (6.5) are expansions that in fact are based on a two-point
interpolation process for f.

The computation of the coefficients in the asymptotic expansion and the con-
struction of error bounds becomes progressively more difficult in the above
cases. Especially this is true when f is defined in terms of implicitly defined
relations due to transformations to standard forms. When f is analytic in a
neighbourhood of the critical points, in the first two cases representations of
the coefficients are available in terms of Cauchy integrals. In general, such a
representation is missing in the third case.

Therefore, a new approach to construct the coefficients of a uniform expan-
sion is worth to mention. In this section we describe a recent method of SoNI
and SLEEMAN [16], where a set of polynomials is introduced to expand the
function f. An interesting by-product of the method is a Cauchy-type integral
for the coefficients that generalizes the representation for the Taylor expansion.
We return to (6.8) to demonstrate the method (in [16] it is given for (4.4), but
it has much wider applications).

Consider the formal expansion

glt) = § o, P(1) (7.1)
s=0

where g is defined by f(1)=f(w)+(t —p)g(¢) and where it is assumed that
{P,} satisfies the following conditions:

@  Po(=1, Py()=t.

@@  P0)=0, s=12,...

@) P ()=@ —wP (1), s=2,3,....

Then there is a unique polynomial solution {P} satisfying the above three
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conditions; the coefficients {e;} in (7.1) can be computed recursively and they
appear as coefficients in the expansion (6.9).

SKETCH OF THE PROOF. From the recursion (iii) it follows that the first polyno-
mials are

1
Po(l) = 1, Py(0)=t, Po()=712—pt, Ps()=41>—oud+pt

The remaining P; follow from (ii) and (iii) by writing
Py(t) = [(r—pyr™' P _y(n)dr.
0

From (ii) we infer ay =g (0). Formal differentiation of (7.1) gives (with (iii))
1g'(1) = ent top(t —p)P (1)t o3t —p)Py(t) + ...,

from which we obtain a; =g’(u). Next we write

gl(t) = IM=a2t+a3P2(t)+a4P3(t)+....

t—p

Applying again the operator t% we get ap =g’1 (). In this way all coefficients

a; can be computed. To show that they turn up in (6.9) we insert (7.1) into
(6.8) and we obtain (the term s =0 gives no contribution)

Fr() ~ 27 )+ Sy (12)
s=1
= ﬁf Al PO =1y (=23,
0

where we used (iii). Hence it follows that y, =A/z****!  and that (7.2) can be
written as

Fr@) ~ 27 Nf@tep/ztap /22 +..]

This gives the relation (using the unicity property of asymptotic expansions)
a,=f(w/p, s=12,..0

The above method generalizes Watson’s lemma: the expansion at ¢t =0 in (3.1)
is now replaced by the expansion (7.1). The polynomials P; reduce to t°/s!
when p—0. Hence in that event (7.1) is the Maclaurin expansion of g(t), when
g is analytic. It also may give a new approach for obtaining error bounds;
some ideas are worked out in [16]. Furthermore, it gives an explicit represen-
tation of f(u) or a,. This result is not in [16].

First we compute the coefficients Q,(z) in the expansion

= = Somro (13)

z—t
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Using (i), (ii), (iii) above we obtain

00e) = 172, 0, 1i(®)= =120,/ —].

For analytic functions g we have

1 I o
o) = = f—f{%dz:;—i— [20 3 0P 0

2ari

Hence, formally, we obtain for «; of (7.1)

w = 5o [s@0uexz =5 [T 0 e

2ari

Since f (1) gives no contribution we arrive at

2mi z

fiw = £ f@06) - 1,2,.... (7.4)
—p
The contour encircles z =p in positive direction and no singularities of f.

ExampLE. Take f(z)=1/(z +1). The residue at z = —1 gives at once

- B s _
fiw = “_HQS( ), s=1,2,..

8. SOME REMARKS ON ERROR BOUNDS

Special functions of mathematical physics are frequently treated as examples to
demonstrate the methods of asymptotical analysis. Functions of hyper-
geometric type satisfy a differential equation and they have integral representa-
tions. Error bounds for the remainders in the expansions of special functions
are derived most frequently from a differential equation. In Olver’s work, see
[11], general methods are derived to obtain strict and realistic error bounds.
For a survey on error bounds for expansions of integrals we refer to WONG
[27], where also a chapter on uniform expansions is included. Wong’s conclu-
sion is that the error theory for uniform expansion is still in its infancy. We
agree with him that it is important to develop the theory. In many applications
there is no choice between integrals and differential equations.

In a recent paper URSELL [22] demonstrates how the maximum-modulus
theorem for analytic functions can be used to bound the error term. In [20]
error bounds are given for (6.9). We now review the method of that paper.

The remainder in (6.9) is defined by

n—1

FA2) = 273 fiwz " +27"E,(2,N)], (8.1)
s=0
A o]

E(z,\) = rz(x) [P e f(nyat, (8.2)

0
where f, is the iterated function given in (6.10). From the conditions on f it
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follows that

V@] < Mu(A+y ™", =0, (8.3)

where M (p) is bounded for fixed finite values of p=\/z,u=0; p is a fixed real
number. So we obtain for E, the bound (we consider real positive values of
AzZ)

A ®
Eaz, V] < 2BZ famp -y qppngy 8.4)
&)

When p —n <0 the integral is easily estimated and we obtain |E,(z,\)| <M (p);
when p —n>0 we have to accept the integral in the bound (although it is a
well-known special function, see (6.6)). Another point is that (8.3) may be
sharp for t-values far from the interesting point ¢ =p. In that case, the right-
hand side of (8.4) may grossly overestimate |E,|. To obtain a more manageable
and more realistic bound we define real numbers o, such that

(D] < MIf(wI[(/w) " e' T+, >0, (8.5)

where M is a fixed constant exceeding unity; f,(u) is supposed to be non-
vanishing. Now the estimate is sharp at t =p and the bound is expressed in
terms of f,(n), which is part of the asymptotic scale. For E, we obtain

|Eq(z,M)] < M|f,(w)|R,, (8.6)
R, = (1—0,/2) M(A—po,)/e " TA—po,)/TQ).

When z —o, and A=pz are large, R, is close to unity, which follows from the
Stirling approximation of the gamma functions. Observe that ¢, does not
depend on z, when we consider p as an independent uniformity parameter.
When g, is a bounded function of p on [0, o), (8.6) gives a sufficient condi-
tion to prove that (6.9) is a uniform expansion with respect to the scale
{fs(wz "} (when f,(u) happens to be zero for some p,s the scale has to be
modified). Of course the bound is useful when o, is not too large.
The best value of o, in (8.5) is given by

i)/ (M (w)]|
o = (/)

It should be remarked that, in general, it is rather difficult to compute o,, espe-
cially when f'is obtained from a transformation to standard form.

The above method modifies a method of Olver [11] for Laplace integrals of
the form (3.1) (non-uniform case).
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